
University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA 1

Lecture 06
Motivation and Background of MIPS ISA

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Readings
• Patterson and Hennessy:

– Chapter 2

• (Well, at least over the next 2 weeks...)

2

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Relatively speaking...
• Let!s illustrate how the 6-instruction processor fits into

the grand scheme of modern computer architectures...

3

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

! MIPS processor:

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

" " " " " " " " " " " "

" " " " " " " " " " " " " (add: op+func)

Machine:

A quick look: more complex ISAs

4

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

B: 000000 00111 01000 01001 xxxxx 100000

D: 0 7 8 9 x 32

! 6-instruction processor:

Add instruction: 0010 ra3ra2ra1ra0 ra3ra2ra1ra0 ra3ra2ra1ra0 ra3ra2ra1ra0

Add Ra, Rb, Rc—specifies the operation RF[a]=RF[b] + RF[c]

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

! A MIPS subtract

Assembly: sub $9, $7, $8 # sub rd, rs, rt: RF[rd] = RF[rs]-RF[rt]

" " " " " " " " " " " "

Machine:

A quick look: more complex ISAs

5

op (6) rs (5) rt (5) rd (5) shamt (5) funct (6)

B: 000000 00111 01000 01001 xxxxx 100010

D: 0 7 8 9 x 34

31 26 25 21 20 16 15 11 10 6 5 0

! 6-instruction processor:

Sub instruction: 0110 ra3ra2ra1ra0 ra3ra2ra1ra0 ra3ra2ra1ra0 ra3ra2ra1ra0

SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] – RF[c]

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

A quick look: more complex ISAs

6

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

A quick look: more complex ISAs

7

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

In terms of assignments:
• In class and in homework assignments, we look at

design issues that relate to modern machines

• In labs, we apply these ideas on a smaller scale (i.e. the
6-instruction processor) and tie lessons learned in the
lab back to class work

• Before we talk more about MIPS, let!s spend a few
slides thinking about how this fits into the big picture.

8

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

So, what are the goals of this course?
• At the end of the semester, you should be able to...

– ...describe the fundamental components required in a
single core of a modern microprocessor

• (Also, explain how they interact with each other, with main
memory, and with external storage media...)

9

Example

How do
on-chip memory,
processor logic,
main memory,

disk
interact?

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

So, what are the goals of this course?
• At the end of the semester, you should be able to...

– ...understand how code written in a high-level language
(e.g. C) is eventually executed on-chip...

10

Example

Both programs could be run on the same processor... how
does this happen?

In C:
public static void insertionSort(int[] list, int length) {
 int firstOutOfOrder, location, temp;

 for(firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++) {
 if(list[firstOutOfOrder] < list[firstOutOfOrder - 1]) {
 temp = list[firstOutOfOrder];
 location = firstOutOfOrder;

 do {
 list[location] = list[location-1];
 location--;
 }
 while (location > 0 && list[location-1] > temp);

 list[location] = temp;
 }
 }
}

In Java:

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Instructions Sets
• “Instruction set architecture is the structure of a

computer that a machine language programmer (or a
compiler) must understand to write a correct (timing
independent) program for that machine”
– IBM introducing 360 (1964)

• an instruction set specifies a processor!s functionality

– what operations it supports

– what storage mechanisms it has & how they are accessed

– how the programmer/compiler communicates programs to
processor

11

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA 12

Instruction Set Architecture
• Must have instructions that

– Access memory (read and write)

– Perform ALU operations (add, multiply, etc.)

– Implement control flow (jump, branch, etc.)

• I.e. to take you back to the beginning of a loop

• Largest difference is in accessing memory

– Operand location

• (stack, memory, register)

– Addressing modes

• (computing memory addresses)

– (Let!s digress on the board and preview how MIPS does a load)

– (Compare to 6-instruction processor?)

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

A bit more on this one...

What makes a good instruction set
• implementability

– supports a (performance/cost) range of implementations

• implies support for high performance implementations

• programmability

– easy to express programs (for human and/or compiler)

• backward/forward compatibility

– implementability & programmability across generations

• e.g., x86 generations: 8086, 286, 386, 486, Pentium, Pentium II,
Pentium III, Pentium 4...

• think about these issues as we discuss aspects of ISAs

13

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Programmability
• a history of programmability

– pre - 1975: most code was hand-assembled

– 1975 – 1985: most code was compiled

• but people thought that hand-assembled code was superior

– 1985 – present: most code was compiled

• and compiled code was at least as good as hand-assembly

14

over time, a big shift in what
“programmability” means

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

pre-1975: Human Programmability
• focus: instruction sets that were easy for humans to

program

– ISA semantically close to high-level language (HLL)

• closing the “semantic gap”

– semantically heavy (CISC-like) instructions

• automatic saves/restores on procedure calls

• e.g., the VAX had instructions for polynomial evaluation

– people thought computers would someday execute HLL
directly

• never materialized

– one problem with this approach: multiple HLLs

• “semantic clash”: not exactly the semantics you want

15

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Today!s Semantic Gap
• popular argument: today!s ISAs are targeted to one

HLL, and it just so happens that this HLL (C) is very
low-level (assembly++)

– would ISAs be different if Java was dominant?

• more object oriented?

• support for garbage collection (GC)?

• support for bounds-checking?

• security support?

16

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA 17

A reason today!s compilers work like this:

Front-end per
language

High-level
optimizations

Global
optimizer

Code
generator

Intermediate representation

Dependencies:

• Language dependent

• Machine independent

• Somewhat language dependent

• Largely machine independent

• Small language dependencies

• Machine dependencies slight

• (I.e. register counts/types)

• Highly machine dependent

• Language independent

Function:

Transform language to
common, intermediate
form

For example,
procedure inlining and
loop transformations

Detailed instruction
selection and machine-
dependent optimizations
(assembler next?)

Pass

Including global and
local optimization +
register allocation

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Instruction Set Aspects
• #1 format

– length, encoding

• #2 operations

– operations, data types, number & kind of operands

• #3 storage

– internal: accumulator, stack, general-purpose register

– memory: address size, addressing modes, alignments

• #4 control

– branch conditions, special support for procedures,
predication

18

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Aspect #1: Instruction Format
• fixed length (most common: 32-bits)

– (plus) easy for pipelining(e.g. overlap) and for multiple
issue (superscalar)

• don!t have to decode current instruction to find next
instruction

– (minus) not compact

• Does the MIPS add “waste” bits?

• variable length

– (plus) more compact

– (minus) hard (but do-able) to superscalarize/pipeline

• PC = PC + ???

19

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA 20

How is the operation specified?

• Typically in a bit field called the opcode

• Also must encode addressing modes, etc.

• Some options:

Operation &

of operands ….Address

Specifier 1

Address

Field 1

Address

Specifier n

Address

Field n

Operation Address

Field 1

Address

Field 2

Operation Address

Specifier

Address

Field

Operation Address

Specifier 1

Address

Specifier 2

Operation &

of operands
Address

Specifier

Address

Field 1

Address

Field 3

Address

Field

Address

Field 2

Variable

Fixed

Hybrid

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

This is us.

21

Some random comments

• Variable addressing mode – allows virtually all
addressing modes with all operations

– Best when many addressing modes & operations

• Fixed addressing mode – combines operation &
addressing mode into opcode

– Best when few addressing modes and operations

– Good for RISC

• Hybrid approach is 3rd alternative

– Usually need a separate address specifier per operand

• When encoding instructions, # of registers and
addressing modes can affect instruction size

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Aspect #2: Operations
• arithmetic and logical:

– add, mult, and, or, xor, not

• data transfer:
– move, load, store

• control:
– conditional branch, jump, call, return

• system:
– syscall, traps

• floating point:
– add, mul, div, sqrt

• decimal:
– addd, convert (not common today)

• string:
– move, compare (also not common today)

• multimedia:
– e.g., Intel MMX/SSE and Sun VIS

• vector:
– arithmetic/data transfer, but on vectors of data

22

Examples...

If no instruction for
HLL operation, can
“fake it” -- i.e. lots
of adds instead of
multiply.

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Data Sizes and Types
• fixed point (integer) data

– 8-bit (byte), 16-bit (half), 32-bit (word), 64-bit (double)

• floating point data

– 32/64 bit (IEEE754 single/double precision)

– 80-bit (Intel proprietary)

• address size (aka “machine size”)

– e.g., 32-bit machine means addresses are 32-bits

– virtual memory size key: 32-bits #> 4GB (not enough)
• especially since 1 bit is often used to distinguish I/O

addresses

– famous lesson:
• one of the few big mistakes in an architecture is not enabling

a large enough address space

23

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Aspect #3: Internal Storage Model
• choices

– stack

– accumulator

– memory-memory

– register-memory

– register-register (also called “load/store”)

• running example:

– add C, A, B (C := A + B)

24

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Storage Model: Stack
push A S[++TOS] = M[A];

push B S[++TOS] = M[B];

add T1=S[TOS--]; T2=S[TOS--]; S[++TOS]=T1+T2;

pop C M[C] = S[TOS--];

– operands implicitly on top-of-stack (TOS)

– ALU operations have zero explicit operands

• (plus) code density (top of stack implicit)

• (minus) memory, pipelining bottlenecks (why?)

– mostly 1960!s & 70!s

• x86 uses stack model for FP

– (bad backward compatibility problem)

• JAVA bytecodes also use stack model

25

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Storage Model: Accumulator

 load A accum = M[A];

 add B accum += M[B];

 store C M[C] = accum;

– acc is implicit destination/source in all instructions

– ALU operations have one operand

• (plus) less hardware, better code density (acc implicit)

• (minus) memory bottleneck

– mostly pre-1960!s

• examples: UNIVAC, CRAY

• x86 (IA32) uses extended accumulator for integer code

26

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Storage Model: Memory-Memory
 add C,A,B M[C] = M[A] + M[B];

– no registers

• (plus) best code density (most compact)

– Why? Total # of instructions smaller for one...

• (minus) large variations in instruction lengths

• (minus) large variations in work per-instruction

• (minus) memory bottleneck

– no current machines support memory-memory

27

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Storage Model: Memory-Register
load R1,A R1 = M[A];

add R1,B R1 = R1 + M[B];

store C,R1 M[C] = R1;

– like an explicit (extended) accumulator

• (plus) can have several accumulators at a time

• (plus) good code density, easy to decode instructions

– asymmetric operands, asymmetric work per instruction

– 70!s and early 80!s

• IBM 360/370

• Intel x86, Motorola 68K

28

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

Storage Model: Register-Register (Ld/St)
 load R1,A R1 = M[A];

 load R2,B R2 = M[B];

 add R3,R1,R2 R3 = R1 + R2;

 store C,R3 M[C] = R3;

– load/store architecture: ALU operations on regs only

• (minus) poor code density

• (plus) easy decoding, operand symmetry

• (plus) deterministic length ALU operations

• (plus) fast decoding helps pipelining and superscalar

– 1960!s and onwards

• RISC machines: Alpha, MIPS, PowerPC (but also Cray)

29

University of Notre Dame

CSE 30321 - Lecture 06 - Motivation and Background of MIPS ISA

On to MIPS
• MIPS is a register-register machine

• Aside from enhancements we made, 6-instruction is
too!

30

